
Supplementary  material:  [Appendix,  numericla  benchmark]  is  available  at 

www.geolsoc.org.uk/SUP00000

The  models  presented  in  this  paper  use  the  finite-differences  code  Parovoz  (Poliakov  & 

Podladchikov, 1992; Podladchikov et al.,  1993),  which is based on the FLAC method (Cundall  & 

Board, 1988), and builts a quadrilateral Lagrangian mesh. This condition requires to incorporate the 

chamber inside the mesh if one wishes to achieve a very high mesh resolution. Then, the elastic 

properties of the meshed chamber determine its capacity to dilate, and thus the amount of pressure 

transfered through its walls into the bedrock domain. Consequently, internal overpressure is best 

measured by the maximum deviatoric stress recorded at the modeled magmatic chamber walls (e.g. 

Chery et al., 1991), and is the value to compare with analytical predictions. Differences in modeled 

results are thus expected when compared to models with « empty chambers » meshes. 

Here we benchmark our models with a finite element code, ADELI (Hassani et al., 1997; Chery 

et al., 2001), with triangular mesh elements and an explicit  dynamic relaxation method similar to 

FLAC, The mesh can be defined radial about the chambers' circular boundary. Adeli has been widely 

applied  to   various  geodynamical  settings  (e.g.  http://www.dstu.univ-

montp2.fr/PERSO/chery/Adeli_web/doc/publis2007.htm), and the  method details can be found for 

example in Chery et al. (2001). Because of computational time issues, mesh resolution in Adeli is 

chosen of the order of 50 m at the chambers' wall, 2 times coarser than in  Parovoz. 

Plasticity in Adeli  is  accounted for slightly differently than in Parovoz. At failure,  Parovoz 

employs  the  Mohr-Coulomb  failure  criterion  by  means  of  an  explicit  algorithm,  whereas  Adeli 

employs an implicit algorithm and the Drucker-Praeger yield criterion. Therefore, despite friction 

angle and cohesion being defined in Adeli to coincide with conventional Mohr-Coulomb values, slight 

differences still remain, In addition, Adeli does not include a tensile cutoff strength, but instead the 

default tensile strength deduced from cohesion To= So/tan φ. Therefore this value is also taken in 

Parovoz for the present benchmarks. 

A1) Benchmark under mostly elastic conditions, P=50MPa

Stress and strain at the surface obtained in our reference model (Fig. 4) are compared with 

those obtained with Adeli, at the specific internal overpressure P=50MPa. At this stage, most of the 

domain is elastic, apart from a few hundred meters below the ground surface at origin Xo. 4 models 

are displayed, with purely elastic and elasto-plastic solutions  for each code Parovoz and Adeli.

Fig.  A1 from top to  bottom,  displays surface displacements  and horizontal  stress  at  the 

surface (top figures), and 2D contours of failure zones, shear-strain and shear-stress for Parovoz and 

for Adeli,  in the middle and bottom of the figure, respectively.

Elastic  solutions are nearly  undistinguishable from elasto-plastic  solutions for  each code, 

except for the horizontal stress (xx) at the origin where failure has initiated: in this case xx is limited 

by the rock tensile strength in Parovoz, whereas Adeli's failure criterion allows for a higher yield at 

the same location. Also, differences in mesh resolution lead to different averaged stress over an 

element thickness, therefore also, the occurrence of local differences. This explains why rock failure 
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at the top surface has a slightly greater extent in Parovoz than in Adeli. 

In general, modeled surface displacements are greater in Adeli than in Parovoz by about 5% 

(maximum uplift of 2.13 m versus 2.05 m, Table 1). We attribute this difference to the combined 

effect of the emptyness of the chamber in Adeli, and local numerical discontinuities at the stair-

shape wall geometry of the chamber in Parovoz, which increase the shear strain there. 

Fig. A1.

A2) Benchmarks for a mostly plastic domain, P=120MPa

Now  we  compare  results  between  Parovoz  and  Adeli  for  an  internal  overpressure  of 

P=120MPA, so that the domain in between the chamber and the ground surface is in majority at a 

state of plastic yield. In this case, the chamber's wall mesh elements are progressively submitted to 
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a stress level much above their yield stress, therefore numerical artifacts are expected to be favored 

here.

We  observe  in  Fig.  A2.(top)  that  modeled  surface  displacements  and  stress  with  Parovoz  are 

generally smaller  than those obtained with Adeli, again by about 5% (e.g. Table 1). The failure 

domain  in  Parovoz  has  a  greater  extent  than  in  Adeli  at  P=120  MPa.   However,  very  good 

consistency is seen in between the Parovoz model at P=120 MPa and the Adeli model at P=150 

Mpa (Figure A2, bottom). From additional models with frictionless material (not shown here), we 

believe that these differences are partly related to the different algorithmic procedures for plastic 

yielding employed in Parovoz and Adeli (explicit Mohr-Coulomb versus implicit Drucker-Praeger in 

Adeli). 

A3) Benchmarks without gravity  P= 15 and 18 MPa

Models  without  gravity  (equivalent  to  a  state  of  lithostatic  pore fluid  pressure)  are  also 

compared with Parovoz and Adeli. For P =15 MPa, surface displacements and horizontal stress are 

in extremelly good agreement (Fig. A3, top).  However, the failure pattern occurs over a circular 

domain around the chamber significantly thinner with Adeli than with Parovoz (middle figures in Fig. 

A3). We also plotted failure patterns which look very similar, and correspond to  P=18.1 MPa in 

Parovoz and  P =18.9 MPa in Adeli (bottom lines in Fig. A3). Note, as in Fig. A2, the peculiar ear 

shape of the plastified domain, which is similar to that obtained in other studies (e.g. Massinas & 

Sakellariou, 2009, Fig. 2d, or Chery et al., 1991).

In  conclusion,  this  benchmark shows a  relatively  good consistency  of  the  model  results 

obtained with Parovoz and with Adeli, considering that differences obviously rise from different mesh 

resolutions,  mesh  geometries  (meshed  versus  unmeshed  chamber),  and  numerical  handling  of 

constitutive laws. In order to obtain a better mechanical solution relieved from numerical artefacts, 

additional comparisons with other numerical tools throughout the community would be necessary. A 

collective project such as that developed to compare the geometry of faults in thrust nappes (Buiter 

et  al.,  2008)   would be recommended.  This  latter  benchmark showed that  whereas results  are 

qualitatively similar, it remains difficult to match shear band geometries exactly, since the highly 

non-linear process of failure depends on specific formulations used in each numerical method (e.g 

.Kaus, 2010; Yarushina et al., 2010). 
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